Виды средних


Виды и формы средних величин

Большое распространение в статистике имеют средние величины. Средняя величина - это обобщающий показатель,  в котором  находят отражение действия общих условий и закономерностей изучаемого явления.  

Средняя -  это  один из распространенных приемов обобщений. Правильное понимание сущности средней, определяет ее особую  значимость  в условиях рыночной экономики, когда средняя через единичное и случайное, позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др. 

Статистические средние рассчитываются на основе данных, правильно организованного массового наблюдения (сплошного и выборочного).  Однако статистическая средняя будет  объективна  и типична, если  она  рассчитывается  по массовым данным для качественно однородной совокупности (массовых явлений).  Например,  если рассчитывать среднюю  заработную плату в кооперативах и на госпредприятиях,  а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана  по  неоднородной совокупности,  и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака,  которые возникают по тем или иным причинам у отдельных единиц наблюдения. При этом, обобщая общее свойство совокупности, средняя затушевывает (занижает) одни показатели и завышает другие.

Например, средняя выработка продавца зависит  от  многих  причин: квалификации, стажа,  возраста,  формы обслуживания,  здоровья и т. д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя  величина  характеризует изучаемую совокупность по какому-либо одному признаку.  Чтобы  получить  полное  и  всестороннее представление об  изучаемой  совокупности по ряду существенных признаков в целом,  необходимо располагать системой средних величин,  которые могут описать явление с разных сторон.

Важнейшим условием научного использования средних величин в статистическом анализе общественных явлений является однородность совокупности, для которой исчисляется средняя. Одинаковая по форме и технике вычисления,  средняя в одних условиях  (для неоднородной совокупности) фиктивная, а в других (для однородной совокупности) соответствует действительности. Качественная однородность совокупности определяется на основе всестороннего теоретического анализа сущности явления.

Существуют различные виды средних в форме простoй или взвешенной:

Для определения средних величин используются следующие формулы:

(кликабельно) 

Правило мажорантности средних: чем выше показатель степени m, тем больше величина средней.

Средняя арифметическая величина обладает следующими свойствами:

  • Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.
  • Если все значения признака (х) увеличить (уменьшить) в одно и то же число Kраз, то средняя увеличится (уменьшится) в K раз.
  • Если все значения признака (x) увеличить (уменьшить) на одно и то же число A, то средняя  увеличится (уменьшится) на это же число А.
  • Если все значения весов (f) увеличить или уменьшить в одно и то же число раз, то средняя не изменится. 
  • Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной. 

Одновременное использование некоторых свойств позволяют упростить расчет средней арифметической: можно из всех значений признака вычесть постоянную величину А, разности сократить на общий множитель K, а все веса  fразделить на одно и то же число и, по измененным данным, рассчитать среднюю. Затем, если полученное значение средней умножить на K, а к произведению прибавить А, то получим искомое значение средней арифметической по формуле:

 

    \[\overline x  = \overline {x'}  \cdot K + A\]

    \[\overline {x'}  = \frac{{\sum {\left( {\frac{{x - A}}{K}} \right) \cdot f} }}{{\sum f }}\]

Полученная, таким образом, преобразованная средняя, называется моментом первого порядка, а вышеизложенный способ расчета средней — способом моментов, или отсчетом от условного нуля.

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины, в качестве значения признака в группах, принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака необходимо определять экспертным путем, исходя из сущности свойств признака и совокупности. При отсутствии возможности экспертной оценки, значения признака в открытых интервалах для нахождения недостающей границы открытого интервала, применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»). Иными словами — ширину (шаг) открытого интервала определяют по величине рядом стоящего интервала.