Модель взаимодействия открытых систем ISO/OSI

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Раздел 3. Стек протокола TCP/IP

ЗАКЛЮЧЕНИЕ

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

ВВЕДЕНИЕ

Организация взаимодействия между устройствами в сети является сложной проблемой, она включает много аспектов, начиная с согласования уровней электрических сигналов, формирования кадров, проверки контрольных сумм и кончая вопросами аутентификации приложений. Для ее решения используется универсальный прием — разбиение одной сложной задачи на несколько частных, более простых задач. Средства решения отдельных задач упорядочены в виде иерархии уровней. Для решения задачи некоторого уровня могут быть использованы средства непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы средств некоторого уровня могут быть переданы только средствам соседнего вышележащего уровня.

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать способ кодирования электрических сигналов, правило определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов до самого высокого уровня, предоставляющего услуги пользователям сети.

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другое в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет услуги, предоставляемые данным уровнем соседнему уровню.

В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы — модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями. Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средства протоколы верхних уровней, как правило, чисто программными средствами.

Раздел 1. Модель взаимодействия открытых систем ISO/OSI

В начале 80-х годов — ряд международных организаций по стандартизации — ISO, ITU-T и некоторые другие — разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System interconnection, OSI), или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

В модели OSI (рис. 1) средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств [3].

Рис. 1. Модель взаимодействия открытых систем ISO/OSI

1) Физический уровень

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

2) Канальный уровень

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи кадров, помещая для выделения каждого кадра специальную последовательность бит в его начало и конец, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые в отличие от локальных сетей редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B.

3) Сетевой уровень

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной; структурой связей.

Сети соединяются между Собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор— это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщения сетевого уровня, или, как их принято называть, пакеты (packets), от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет. Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня.

Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

4) Транспортный уровень

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня (Transport layer) заключается в том, чтобы обеспечить приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов услуг, предоставляемых транспортным уровнем. Эти виды услуг отличаются качеством: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Читайте также:  Международное и внутригосударственное право две системы права: общее и особенное

5) Сеансовый уровень

Сеансовый уровень (Session layer) обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

6) Уровень представления

Уровень представления (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда будет понятна прикладному уровню в другой системе. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия кодов символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрирование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

7) Прикладной уровень

Прикладной уровень (Application layer) — это в действительности простой набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Единица данных, которой оперирует Прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примеров протоколов прикладного уровня хотя бы несколько наиболее распространенных реализаций файловых служб: NCP в операционной системе Novell NetWare, 8MB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

кодирование коммуникационный протокол интерфейс

Раздел 2. Уровень сетевого взаимодействия интерфейсов сети

Стержнем всей архитектуры является уровень межсетевого взаимодействия, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию — передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу — обеспечение надежной информационной связи между двумя конечными узлами — решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части — сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня — уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/SNAP, причем в поле Type заголовка SNAP должен быть указан код 0х0800. Только для протокола Ethernet в RFC 1042 сделано исключение — помимо заголовка LLC/SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Type. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей — протоколы соединений «точка-точка» SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии АТМ в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети АТМ, появилась в 1994 году вскоре после принятия основных стандартов этой технологии) [1].

Читайте также:  Кадровый менеджмент в инновационной деятельности. Оценка социальной эффективности проектов совершенствования системы и технологии нововведений в кадровой работе

Раздел 3. Стек протокола TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) — это промышленный стандарт стека протоколов, разработанный для глобальных сетей.

Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу сети Internet. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC определяют стандарты.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC [4].

Если в настоящее время стек TCP/IP распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

· Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

· Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

· Это метод получения доступа к сети Internet.

· Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

· Все современные операционные системы поддерживают стек TCP/IP.

· Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

· Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 2. Протоколы TCP/IP делятся на 4 уровня [2].

Рис. 2. Стек TCP/IP

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей — протоколы соединений «точка-точка» SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Следующий уровень (уровень III) — это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом — источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие [5].

ЗАКЛЮЧЕНИЕ

Итак, формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют «протоколом». При этом соотношение между протоколом-формально определенной процедурой и протоколом-программным модулем, реализующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько программных реализации. Именно поэтому при сравнении протоколов следует учитывать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокупности протоколов, составляющих стек, в частности, насколько рационально распределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.

Протоколы реализуются не только компьютерами, но и другими сетевыми устройствами — концентраторами, мостами, коммутаторами, маршрутизаторами и т.д. Действительно, в общем случае связь компьютеров в сети осуществляется не напрямую, а через различные коммуникационные устройства. В зависимости от типа устройства в нем должны быть встроенные средства, реализующие тот или иной набор протоколов.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

1. Бройдо В.Л. «Вычислительные системы, сети и телекоммуникации»: Учебник для вузов. 2-е изд. — СПб.: Питер, 2006 г.

2. Олифер В.Г., Олифер Н.А. «Компьютерные сети. Принципы, технологии, протоколы»: изд. 4-ое, Учебник для ВУЗов — Питер, 2010 г.

3. Таненбаум Э. «Компьютерные сети»: 4-е изд. — СПб.: Питер, 2003 г.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...