Данная работа не уникальна. Ее можно использовать, как базу для подготовки к вашему проекту.
ПЛАН
1. Общее понятие о радиации
1.1 Естественная и искусственная радиоактивность
2.Биологическое действие ионизирующих излучений
2.1 Особенности ионизирующего излучения при действии
на живой организм
3. Радиационно-опасные объекты
3.1 Характеристика радиационно-опасных объектов
3.2 Основные опасности при авариях на РОО
4. Радиационная безопасность населения
1. ОБЩЕЕ ПОНЯТИЕ О РАДИАЦИИ.
Слово «радиация» воспринимается как образ новой, страшной угрозы здоровью и жизни людей. Именно так оно обычно отображается в средствах массовой информации, в сообщениях о миллионах пострадавших от радиации в результате аварий и испытаний ядерного оружия. Стало возможно объяснять любое свое заболевание, начиная от головной боли, последствиями облучения. Средства массовой информации сообщают, как об отдельных случаях, так и общем учащении вызванных малыми дозами радиации онкологических заболеваний, лейкозов, нервных, ортопедических, сосудистых, и любых других заболеваний.
Ожидание опасности радиации изменяет восприятие и планирование жизни людей. Более половины жителей чистых от радиации районов Брянской области отмечают появление различных болей и заболеваний после аварии на ЧАЭС. Одни считают, что овощи на огороде в результате облучения стали расти хуже. Другие, наоборот, сообщают о необычно пышном росте сорняков.
Поражает в конце двадцатого века скудость познаний человека о природе, в которой он живет. Некоторые, услышав слово «радиация», готовы бежать куда угодно, только подальше. А ведь бежать не надо. Например, естественный радиационный фон существует везде и всюду, как кислород в воздухе.
Не надо бояться радиации, но и не следует ею пренебрегать. В малых дозах она безвредна и легко переносится человеческим организмом, в больших дозах бывает смертельно опасна.
Мы едим, пьем, дышим, – все это сказывается на дозах, которые получаем от естественных источников. Например, хлебобулочные изделия имеют большую радиоактивность, чем молоко, сметана, масло, кефир, овощи и фрукты. Любимый цветной телевизор это источник рентгеновского излучения. Самым распространенным источником облучения являются часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую ту, которая обусловлена утечками на АЭС.
Надо понять, что радиация везде и всюду окружает нас, мы зародились, живем в этой среде, и ничего здесь противоестественного нет. Только знание основ природы ионизирующих излучений, их влияние на человека и степень опасности могут вылечить людей от радиофобии, болезни, к сожалению, еще так распространенной. Радиофобия – это болезнь нашего невежества.
В 1896 г. французский физик Анри Беккерель занимался люминесценцией. Он знал об открытии в 1895 г. Рентгеном Х-лучей, как их тогда называли. Знал он так же о свечении стекла рентгеновской трубки, имеющем люминесцентный характер. Беккерель решил проверить: не сопровождается ли всякая люминесценция рентгеновскими лучами. Случайно взял одну из солей урана, светящуюся желто-зеленым светом, завернул в черную бумагу, предварительно подержав, на солнце и положил в шкаф на фотопластинку. Проявив пластинку, увидел изображение куска соли урана. Но однажды случайно была проявлена фотопластинка, на которой лежала не облученная солнцем урановая соль. Далее, поместив между солью и пластинкой металлический крестик, Беккерель получил его контуры на пластинке. Так были открыты новые лучи не являющиеся рентгеновскими. Они обладают большой проникающей способностью, не отражаются, не преломляются, проходят насквозь через различные вещества, интенсивность их не изменяется при изменении температуры, освещения, давления: не менялась она и с течением времени.
Однажды для публичной лекции он взял пробирку с радиоактивным препаратом и положил ее в жилетный карман. На следующий день, обнаружив на теле покраснение кожи, в виде пробирки Беккерель рассказывает об этом Пьеру Кюри, который ставит на себе опыт: в течение десяти часов носит привязанную к предплечью пробирку с радием. Через несколько дней у него развивается покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал два месяца. Так впервые человеком, опытным путем, было открыто биологическое действие радиоактивности. Супруги Кюри оба умерли от лучевой болезни.
1.1 ЕСТЕСТВЕННАЯ И ИСКУСТВЕННАЯ РАДИОАКТИВНОСТЬ
Радиоактивность- это способность некоторых химических элементов (урана, тория, радия, калифорния) самопроизвольно распадаться и испускать невидимые излучения.
Радиоактивные вещества (РВ) распадаются со строго определённой скоростью, измеряемой периодом полураспада, т.е. временем, в течение которого распадается половина всех атомов. Радиоактивный распад не может быть остановлен или ускорен каким-либо способом.
Пучок излучений в магнитном поле разделяется на три вида излучения:
б-излучение – поток положительно заряженных частиц представляющих собой ядро гелия, движущийся со скоростью около 20 000 км /с, т.е. в35 000 раз быстрее, чем современные самолёты. Альфа-частица относится к тяжелым частицам, она в 7300 раз тяжелее электрона. В животных тканях её проникающая способность ещё меньше и измеряется микронами. Альфа- частицы входят в состав космических лучей у Земли (6%).
Альфа – распад представляет собой самопроизвольное превращение ядер, сопровождающееся испусканием двух протонов и двух нейтронов, образующих ядро Не42.
В результате альфа- распада заряд ядра уменьшается на 2, а массовое число на 4 единицы. Например: кинетическая энергия вылетающей б- частицы определяется массами исходного и конечного ядра б – частицы. Известно более 200 б- активных ядер, расположенных в основном в конце периодической системы. Известно также около 20 б-радиоактивных изотопов редкоземельных элементов. Здесь б -распад наиболее характерен для ядер с числом нейтронов N=84, которые при испускании б-частиц превращаются в ядра с заполненной ядерной оболочкой (N=82). Время жизни б-активных ядер колеблются в широких пределах: от 3*10-7 сек (для Po212) до (2-5)*1015 лет (природные изотопы Ce142, 144, 176) Энергия наблюдаемого б-распада лежит в пределах 4-9 Мэв (за исключением длиннопробежных б-частиц) для всех тяжелых ядер и 2-4.5 Мэв для редкоземельных элементов.
в- излучение – поток заряженных отрицательно заряженных частиц (электронов). Их скорость 200 000-300 000 км/с приближается к скорости света. Масса бета- частиц равна 1/1840 массы водорода. Бета- частицы относятся к лёгким частицам.
г-излучение – представляет собой коротковолновое электромагнитное излучение. По свойствам оно близко к рентгеновскому излучению, но обладает значительно большей скоростью и энергией, но распространяется со скоростью света. В спектре электромагнитных волн эти лучи занимают почти крайнее справа место. За ними следуют лишь космические лучи. Энергия гамма- лучей в среднем составляет около 1,3 Мэв (мегаэлектроновольт). Это очень большая энергия. Частота колебаний волн гамма лучей равна, 10 20 раз/сек, то есть гамма лучи относятся к очень жёстким лучам, и проникающая способность велика. Через тело человека они проходят беспрепятственно.
При некоторых ядерных реакциях возникает сильно проникающее излучение, не отклоняющееся электрическим и магнитным полями. Эти лучи проникают через слой свинца толщиной в несколько метров. Это излучение представляет собой поток частиц, заряженных нейтрально. Эти частицы названы нейтронами.
Масса нейтрона равна массе протона. Нейтроны обладают различной скоростью, в среднем меньше скорости света. Быстрые нейтроны развивают энергию порядка 0,5 Мэв и выше, медленные – от долей до нескольких тысяч электроновольт. Нейтроны, являясь электрически нейтральными частицами, обладают, как и гамма- лучи, большой проникающей способностью. Ослабление потока нейтронов в основном происходит за счет столкновения с ядрами других атомов и за счет захвата нейтронов ядрами атомов. Так при столкновении с легкими ядрами нейтроны в большей степени теряют свою энергию, но легкие водородосодержащие вещества такие как: вода, парафин, ткани тела человека, сырой бетон, почва, являются лучшими замедлителями и поглотителями нейтронов.
В природе многие химические элементы выделяют излучения. Эти элементы называются радиоактивными элементами, а сам процесс получил название естественной радиоактивности. На процессы радиоактивного излучения не оказывают никакого действия ни огромные давления и температуры, ни магнитные и электрические поля. Радиоактивное излучение связано с превращением ядер элемента. Существует два вида естественного радиоактивного распада.
Альфа- распад, при котором ядро испускает альфа- частицу. При этом виде распада всегда из одного ядра получается ядро другого элемента, у которого заряд меньше на две единицы, а масса меньше на четыре единицы. Так, например, распадается радий, превращаясь в радон:
Ra88226> He24 + Rn86222
Бета-распад, при котором из ядра вылетает бета-частица. Так как бета-частица может быть различно заряженной, то бета-распад может быть или электронный, или позитронный.
При электронном распаде образуется элемент с той же массой, но с зарядом, большим на единицу. Так торий превращается в протактиний:
Th 90233 >Pa 91233 + e-1 + г – квант.
При позитронном распаде радиоактивный элемент теряет положительную частицу и превращается в элемент с той же массой, но с зарядом меньшим на единицу. Так изотоп магния, превращается в натрий:
Mg1223> Na1123 + e+1 + г- квант.
Направляя, пучок альфа- частиц на пластинку алюминия, впервые получили искусственный радиоактивный изотоп фосфора Р1530:
Al1327 + He24 > P1530+ n01
Полученные таким образом изотопы были названы искусственно радиоактивными, а их способность распадаться получила название искусственной радиоактивности. В настоящее время получено свыше 900 искусственных радиоактивных изотопов.
Они широко используются в медицине и в биологии для изучения химических превращений в организме. Этот метод называется методом меченых атомов.
2. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
2.1 ОСОБЕННОСТИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ ПРИ ДЕЙСТВИИ НА ЖИВОЙ ОРГАНИЗМ
При изучении действия излучения на организм были определены следующие особенности:
1. Высокая эффективность поглощенной энергии. Малые количества поглощенной энергии излучения могут вызвать глубокие биологические изменения в организме.
2. Наличие скрытого, или инкубационного, периода проявления действия ионизирующего излучения. Этот период часто называют периодом мнимого благополучия. Продолжительность его сокращается при облучении в больших дозах.
3. Действие от малых доз может суммироваться или накапливаться. Этот эффект называется кумуляцией.
4. Излучение воздействует не только на данный живой организм, но и на его потомство. Это так называемый генетический эффект.
5. Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы уже наступают изменения в крови.
6. Не каждый организм в целом одинаково реагирует на облучение.
7. Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.
Энергия, излучаемая РВ, поглощается окружающей средой. В результате воздействия ионизирующего излучения на организм человека в тканях происходят сложные физические, химические и биохимические процессы.
Поглощенная энергия от ионизирующих излучений различных видов вызывает ионизацию атомов и молекул веществ, в результате чего молекулы и клетки ткани разрушаются. Ионизация является одним из основных звеньев в биологическом действии излучения.
Известно, что 2/3 общего состава ткани человека составляют вода и углерод; вода под действием излучения расщепляется на водород H и гидроксильную группу OH, которые либо непосредственно, либо через цепь вторичных превращений образуют продукты с высокой химической активностью: гидратный окисел HO2 и перекись водорода H2O2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.
В результате воздействия ионизирующего излучения нарушается нормальное течение биохимических процессов и обмен вещества в организме. В зависимости от величины поглощенной дозы излучения и от индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма.
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении (источник находиться вне организма), так и при внутреннем облучении (РВ попадают внутрь организма, например пероральным или ингаляционным путем).
Рассмотрим действие ионизирующего излучения, когда источник облучения находится вне организма.
Биологический эффект ионизирующего излучения зависит от суммарной дозы и времени воздействия излучения, от вида излучения, размеров излучаемой поверхности и индивидуальных особенностей организма
При однократном облучении всего тела человека возможны биологические нарушения в зависимости от суммарной поглощенной дозы излучения.
При облучении дозами, в 100-1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения.
Поглощенная доза облучения, вызывающая поражение отдельных частей тела, а затем смерть, превышает смертельную поглощенную дозу облучения всего тела. Смертельные поглощенные дозы для отдельных частей тела следующие: голова-2000, нижняя часть живота-3000, верхняя часть живота-5000, грудная клетка-10 000, конечности-20 000 рад.
Степень чувствительности различных тканей к облучению неодинакова. Если рассматривать ткани органов в порядке уменьшения их чувствительности к действию излучения, то получим следующую последовательность: лимфатическая ткань, лимфатические узлы, селезенка, зобная железа, костный мозг, зародышевые клетки. Большая чувствительность кроветворных органов к радиации лежит в основе определения характера лучевой болезни. При однократном облучении всего тела человека поглощенной дозой 50 рад через день после облучения может резко сократиться число лимфоцитов , продолжительность жизни которых и без того незначительна – менее одного дня. Уменьшится также и количество эритроцитов (красных кровяных телец) по истечении двух недель после облучения (продолжительность жизни эритроцитов примерно 100 суток). У здорового человека насчитывается порядка 1014 красных кровяных телец при ежедневном воспроизводстве 1012, у больного лучевой болезнью такое соотношение нарушается.
Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие.
Степень поражения организма зависит от размера облучаемой поверхности. С уменьшением облучаемой поверхности уменьшается и биологический эффект. Так, при облучении фотонами поглощенной дозой 450 рад участка тела площадью 6 см2 заметного поражения организма не наблюдалось, а при облучении такой же дозой всего тела было 50% смертельных случаев.
Индивидуальные особенности организма человека проявляются лишь при небольших поглощенных дозах. Чем моложе человек, тем выше его чувствительность к облучению, особенно высока она у детей. Взрослый человек в возрасте 25 лет и старше наиболее устойчив к облучению.
При попадании РВ внутрь организма поражающее действие оказывают в основном б – источники, а затем в- и г -источники. Альфа – частицы, имеющие небольшую плотность ионизации, разрушают слизистую оболочку, которая является слабой защитой внутренних органов по сравнению с наружным кожным покровом.
РВ могут попасть внутрь организма при вдыхании воздуха, зараженного радиоактивными элементами, с зараженной пищей или водой и, наконец, через кожу, а также при заражении открытых ран.
Попадание твердых частиц в дыхательные органы зависит от степени дисперсности частиц. Из проводившихся над животными опытов установлено, что частицы пыли размером менее 0.1 мкм ведут себя так же, как и молекулы газа, т. е. при вдохе они попадают вместе с воздухом в легкие, а при выдохе вместе с воздухом удаляются. В легких может оставаться только самая незначительная часть твердых частиц. Крупные частицы размером более 5 мкм почти все задерживаются носовой полостью.
Основные особенности биологического действия ионизирующих излучений:
1. Действие ионизирующих излучений на организм не ощутимы человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующее излучение. Поэтому человек может проглотить, вдохнуть радиоактивное вещество без всяких первичных ощущений. Дозиметрические приборы являются как бы дополнительным органом чувств, предназначенным для восприятия ионизирующего излучения.
2. Видимые поражения кожного покрова, недомогание, характерные для лучевого заболевания, появляются не сразу, а спустя некоторое время.
3. Суммирование доз происходит скрыто. Если в организм человека систематически будут попадать РВ, то со временем дозы суммируются, что неизбежно приводит к лучевым заболеваниям.
Действие ионизирующего излучения на любое вещество, в том числе и на живую ткань, сопровождается образованием ионов и возбужденных атомов.
Процесс образования ионов длится всего около 10-13 с, после чего наступают физико-химические изменения ткани.
Большой интерес представляет решение вопроса о том, возникают ли физико-химические изменения в живой ткани (например, в белках) в результате ионизации молекул этого вещества. Последующие физико-химические изменения происходят сначала в среде, в которой находятся белковые вещества, а уже продукты разложения раствора (воды) действуют на белки, вызывая соответствующие изменения в них.
Вероятность попадания ионизированной частицы в молекулу воды в 104 раз больше, чем в молекулу белка, так как в отдельных тканях организма содержится до 80% воды.
До недавнего времени преобладала теория, утверждавшая, что излучение действует непосредственно на белковое вещество клетки, на так называемую мишень. Мишенью называется вычисленный из сопоставления дозы облучения и биологического эффекта чувствительный объем, действие на который ведет к его поражению.
Но теория мишени оказалась неудовлетворительной для объяснения биологического действия излучения на сложные соединения, на которые влияют не только доза излучения, но и физиологическое состояние объекта, изменение температуры и водной среды и т.д. Поэтому имеется мнение, что излучение действует косвенным путем, через продукты разложения воды. Рассмотрим процесс радиолиза воды.
Под действием излучения в воде образуется положительно заряженный ион воды (Н2О):
Н2О > Н2О++е –
Освободившийся электрон может соединяться с другой молекулой воды, которая приобретает в этом случае отрицательный заряд:
Н2О + е ->Н2О – + Н.
Расположение положительного иона воды можно записать так:
Н2О+ Н + ОН.
Водород (Н) и гидроксильная группа ОН, обладая большой химической активностью, взаимодействуют с биологическими веществами и вызывают их изменение. При наличии кислорода в воде могут образовываться радикалы НО2 и перекись водорода Н2О2, которые также являются сильными окислителями.
Наличие промежуточного этапа в биологическом действии ионизирующего излучения (образование продуктов разложения воды) не означает, что это действие не может быть вызвано и прямой ионизацией биологически важных веществ, например белков, ферментов и др. Очевидно, отношение прямого и косвенного действий ионизирующего излучения будет меняться в зависимости от конкретных условий облучения, в частности от поглощенной дозы и содержания воды в облучаемом объекте. Оно может быть однократным, фиксированным и хроническим.
Фракционированное (дробное) облучение приводит к менее тяжелым последствиям, чем однократное в той же суммарной дозе, так как в интервалах между облучениями многие повреждения восстанавливаются благодаря работе репаративных систем организма.
Хроническое облучение (длительное, малыми дозами) может привести к развитию хронической лучевой болезни, снижению устойчивости организма к вредным воздействиям и отдаленным последствиям облучения.
Степень поражения организма зависит от размеров облучаемой поверхности. С ее сокращением уменьшается и биологический эффект. Так при облучении фотонами в дозе 4-5 Зв участка тела площадью 6 см2 заметного поражения организма не наблюдается, а при облучении в такой же дозе всего тела – 50% пострадавших погибает.
Последствия облучения организма существенно зависят от вида ионизирующего излучения.
Основной эффект действия радиации на организм, как было сказано ранее, это ионизация молекул и атомов, определяющая все последующие нарушения . Различная плотность ионизации разных видов излучения определяет их разную биологическую эффективность, т.е. степень тяжести поражений разными видами ионизирующих излучений при одной и той же поглощенной дозе различна. Поэтому для целей радиационной защиты введена эквивалентная доза, учитывающая биологическую эффективность излучения. Она равна величине поглощенной дозы, умноженной на коэффициент, характеризующий данный тип излучения.
3. РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ
3.1 ХАРАКТЕРИСТИКА РАДИАЦИОННО-ОПАСНЫХ ОБЪЕКТОВ
В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.
Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.
Радиационно-опасный объект (РОО) – предприятие, на котором при авариях могут произойти массовые радиационные поражения.
Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном обусловленным проведенными с 1945 по 1989 г. не менее 1820 испытаниями ядерного оружия; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно – опасных объектов.
Количество отработанного ядерного топлива в РФ составляет более 10 000 тонн. Объемы его постоянно растут, а мощности по переработке остаются прежними, в итоге на АЭС отработанного топлива хранится в среднем в 1,5-2 раза больше, чем в активных зонах, а на Белоярской, Билибинской, Ленинградской и Курской АЭС – в 3 раза.
Схожее положение с радиоактивными отходам. Основные источники их образования – добыча, обогащение урановой руды и производство тепловыделяющих элементов (ТВЭЛов), эксплуатация АЭС, регенерация отработавшего топлива, использование радиоизотопов. Общий объем таких отходов достиг 500 млн. кубических метров.
Во всем мире стремительно растут энергозатраты. Производство электроэнергии удваивается за 10-15 лет. Мировые запасы нефти и газа могут быть исчерпаны за 50-80 лет. Запасы твердых топлив также не безграничны. После нефтяного кризиса 60-х годов, когда цена на нефть подскочила в 15 раз, начался интенсивный поиск альтернативных источников энергии. Но пока использование энергии ветра, волн и солнца дает неутешительные результаты.
Сегодня потребление первичных энергоресурсов на душу населения составляет в РФ 6,7 тонн условного топлива в год. Для сравнения: в Западной Европе – 5, в США – 11 тонн.
Основная часть производства электроэнергии приходится на тепловые электростанции (ТЭС) – 60%, для чего расходуется 211 млн. тонн условного топлива, или 41% потребляемого в России газа, 14% нефти, 37% угля. Специфика экономики России такова, что основные энергоресурсы расположены в восточных регионах страны, а около 70% всего электропроизводства и потребления осуществляется в европейской части, и на доставку энергоносителей в эти районы расходуется около 20% всего добываемого топлива.
Более 75% энергии на нашей планете получается в результате переработки ископаемых топлив, при этом в атмосферу выбрасывается 21 млрд. тонн двуокиси углерода, что грозит глобальной экологической катастрофой.
Топливо-энергетический комплекс, обладает большой инертностью. Сброс производства при прекращении инвестиций происходит в течении 2-3 лет, а восстановление прежнего объема, при дополнительных вложениях, достигается лишь через 8-15 лет
Единственный путь, который может отвести угрозу энергетического кризиса в настоящее время, это использование энергии атомного ядра.
ТЭС, вырабатывая энергию, сжигает уголь, остается шлак и зола. Много золы. Экибастузская ГРЭС-1, например, за один год только в воздух выбрасывает 1 млн. 281 тыс. тонн золы, 177 тыс. тонн сернистого ангидрида, 48 тыс. тонн окислов азота. Леса, луга, вода, почва вокруг оказались загрязненными на площади 5 тыс. квадратных километров. Трава хрустит на зубах. Она как рашпиль стачивает зубы у коров и овец за 2-3 года. Подсчитано, что работа подобной ГРЭС наносит ущерб природе на такую же сумму, сколько стоит топливо, а иногда и больше. 70 млн. тонн пыли и ядовитых газов выбрасывается ежегодно в небо страны тепловыми электростанциями.
АЭС в этом отношении чисты: ни золы, ни газов. Да, выработка тепла на АЭС сопровождается выделением опасных радиоактивных веществ, ионизирующих излучений, есть проблемы захоронения отходов топлива. Но станция будет безопасна, если в любом случае, при любой аварии радиоактивность не выйдет за пределы защитных сооружений. Атомная энергия единственно реальная замена ископаемому топливу.
В СССР на начало 1989 г. в эксплуатации находилось 15 станций с 49 работающими ядерными реакторами. В США в это же время было 137 реакторов а в настоящее время около 150.В РФ сейчас 9 станций с 29 работающими ядерными реакторами, из них: 16 РБМК и 13 ВВЭР. Они вырабатывают 10-12% электроэнергии, ГЭС- 20%, остальную тепловые станции.
АЭС расположены:
1. Балаковская (г. Балаково Саратовской обл.).
2. Белоярская (пос. Заречный Свердловской обл.).
3. Билибинская (пос. Билибино Магаданской обл.).
4. Калининская (г. Удомля Тверской обл.).
5. Кольская (г. Полярные зори Мурманской обл.).
6. Курская (г. Курчатов Курской обл.).
7. Нововоронежская (г. Нововоронеж Воронежской обл.)
8. Смоленская (г. Десногорск Смоленской обл.).
9. Ленинградская (г. Сосновый Бор Ленинградской обл.).
В РФ также имеются 9 атомных судов с 15 реакторами. В ВМФ и Минтрансе РФ всего около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 183 атомных подводных лодок , причем, 120 из них с более 200 ядерными реакторами стоят с не выгруженным ядерным топливом. ( Данные по состоянию на момент гибели АПЛ «КУРСК» осень 2000 года). Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте,50% технически и морально устарели, будут выведены из строя к 2005 году. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.
К РОО относятся и 30 НИИ со 113 исследовательскими ядерными установками. 50 таких реакторов находятся в Московской области, а 9 из них непосредственно в Москве.
Предприятий ядерно-топливного цикла 12, в т.ч. 3 из них с радиохимическим производством.
16 региональных спецкомбинатов «Радон» по переработке, транспортировке и захоронению отходов. Пункты захоронения радиоактивных отходов (ПЗРО) специальных комбинатов «Радон» расположены рядом с городами Москва, Санкт-Петербург, Волгоград, Нижний Новгород, Грозный, Иркутск, Казань, Самара, Мурманск, Новосибирск, Ростов-на-Дону, Саратов, Екатеринбург, Благовещенск республики Башкортостан, Челябинск и Хабаровск.
Согласно данным Информационной системы МАГАТЕ по энергетическим реакторам в 30 странах мира эксплуатируется 432 АЭС общей мощностью примерно 340 ГВт. На них производится около 17% электроэнергии от общемирового уровня.
3.2 ОСНОВНЫЕ ОПАСНОСТИ ПРИ АВАРИЯХ НА РОО
Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.
Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их.
Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
Серьезную проблему представляет необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.
Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.
Ядерный взрыв ни в одном реакторе произойти в принципе не может.
Начиная с 50-х годов, развитые страны продолжают наращивать свой производственный ядерный потенциал. АЭС все увереннее выступают в качестве важного источника энергии в странах Запада, США, Канады, Японии и др. Так доля АЭС в общем объеме вырабатываемой электроэнергии составляет: в США -14%, Франции- 70%, Японии-20%, Германии-30%, Великобритании-17%, Канаде – более 13%, Болгарии- около 30% и Швеции 100%. Ускоренными темпами развивается ядерная энергетика в Южной Корее, Индии, Аргентине, Пакистане, Тайване, ЮАР.
Параллельно с этим ростом идет увеличение аварий на РОО. Так, с 1957 года по настоящее время в ряде западных стран и США было зафиксировано около 200 происшествий только на АЭС, в том числе более 30 крупных аварий многие из которых сопровождались выбросами радиоактивных продуктов распада в окружающую среду. Только за 1971 – 1985 гг. в 14 странах на АЭС произошла 151 авария различной сложности. Кроме того, имеются данные о более чем 20 инцидентах с ядерным оружием в США и Великобритании за последние 40 лет. Хотя тяжелых радиационных последствий данные инциденты не имели.
В соответствии с экспертной оценкой инцидентов с ядерным оружием в США и Великобритании с 1950 по 1998 г.г. произошло 9 аварий, которые могли привести к возникновению ядерной войны, 77 аварий, которые привели или могли привести к разрушениям и гибели людей, к заражению местности токсичными и радиоактивными веществами, 100 аварий с носителями, на которых находилось или могло находиться ядерное оружие.
В 1996 году на АЭС РФ зарегистрировано 87 нарушений в т.ч. 22 с отключением энергоблоков, 28 случаев приведшим к снижению мощности.
Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, или повреждению ТВЭЛов, приведшую к потенциально опасному облучению людей сверх допустимых пределов. Иногда используется понятие ядерно-опасного режима, который представляет собой отклонения от пределов и условий безопасности эксплуатации реакторной установки, не приводящие к ядерной аварии. Ядерно-опасный режим можно рассматривать как режим, создающий аварийную ситуацию.
Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду РВ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии на РОО могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия.
Основным поражающим фактором при авариях на реакторах АЭС это радиоактивные загрязнения местности и источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.
Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС.
Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.
Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.
Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.
Разберем особенности радиоактивного заражения местности при авариях на АЭС, учитывая в первую очередь опыт аварии на ЧАЭС. Источником радиоактивного заражения выбросов в атмосферу из аварийного реактора явились продукты цепной реакции. В выбросах было обнаружено 23 основных радионуклида.
В первые минуты после взрыва и образования радиоактивного облака наибольшую угрозу для здоровья людей представляли изотопы так называемых благородных газов (ксеноны), но они быстро рассеиваются в атмосфере, теряя свою активность. Таким образом, радиоактивное заражение не образуется.
В последующем воздействуют на людей коротко живущие радиоактивные компоненты, такие как Йод -131(8 суток).
Затем воздействуют на организм долгоживущие изотопы, Цезий-137 и Стронций-90 (до 30 лет).
На фоне тугоплавкости большинство радионуклидов, такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Состав аварийного выброса продуктов деления реактора существенно отличается от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения. При авариях на АЭС характерно радиоактивное загрязнение атмосферы и местности легколетучими радионуклидами (Йод-131, Цезий-137 и Стронций-90), а, во-вторых, Цезий-137 и Стронций-90 обладают длительными периодами полураспада. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.
И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.
Загрязнение местности от Чернобыльской катастрофы происходило в ближайшей зоне 80 км в течение 4-5 суток, а в дальней зоне примерно 15 дней. Наиболее сложная и опасная радиационная обстановка сложилась в 30-км зоне от АЭС, в Припяти и Чернобыле. Из-за этого оттуда было эвакуировано все население. К началу 1990 г. во многих районах мощность дозы уменьшилась и приблизилась к фоновым значениям 12-18 мкР/ч. Припять и на сегодня представляет опасность для жизни.
Специалисты выделяют следующие потенциальные последствия радиационных аварий:
Немедленные смертельные случаи и травмы среди работников предприятия и населения;
Латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;
Материальный ущерб и радиоактивное загрязнение земли и экосистем;
Ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.
К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.
РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ НАСЕЛЕНИЯ
5 декабря 1995 г. Государственной Думой принят Федеральный закон «О радиационной безопасности населения», который устанавливает государственное нормирование в сфере обеспечения радиационной безопасности. Статья 9 определяет пределы дозовых нагрузок для населения и персонала, причем более жесткие, чем ранее действующие. Эти нормы введены в действие с 1 января 2000 года.
Устанавливаются следующие основные гигиенические нормативы (допустимые пределы доз) облучения на территории России:
Для населения средняя годовая эффективная доза равна 0.001 зиверта ( 1мЗв) или эффективная доза за период жизни (70 лет) – 0.07 зиверта (70 мЗв);
Для работников РОО средняя годовая эффективная доза равна 0.02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) – 1 зиверту (1 000 мЗв). Допустимо облучение в годовой эффективной дозе до 0.05 зиверта, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0.02 зиверта.
Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным и искусственным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.
В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких чрезвычайных ситуаций.
Примерно до 50% от общего облучения, которое получает человек в повседневной жизни, ему дает радиоактивный радон. Именно поэтому в ст. 15 сказано: «Облучение населения и работников, обусловленное радоном, продуктами его распада, а также другими долгоживущими природными радионуклидами, в жилых и производственных помещениях не должны превышать установленные нормативы».
Поэтому теперь, в целях обеспечения защиты населения, необходимо: тщательно подбирать участки для строительства зданий и сооружений, учитывая уровни выделения радона из почвы; проводить проектирование и строительство так, чтобы не допустить поступление этого газа в помещения вместе с воздухом; контролировать уровень содержания радона в помещениях в процессе их эксплуатации.
И еще одно требование, которого раньше никогда не было. Звучит оно довольно жестко: «Запрещается использовать строительные материалы и изделия, не отвечающие требованиям к обеспечению радиационной безопасности».
Вот почему на предприятиях, выпускающих кирпич, керамзит, облицовочную плитку, железобетонные изделия, должен производиться тщательный радиационный контроль как поступающего сырья, так и готовой продукции.
Обращено внимание и на медицинские рентгенорадиологические процедуры. Например, по требованию гражданина ему предоставляется полная информация об ожидаемой или получаемой им дозе облучения и о возможных последствиях в результате таких процедур или исследований. Человек имеет право отказаться от них, за исключением профилактических исследований, проводимых для выявления заболеваний, опасных в эпидемиологическом отношении.
Если на ликвидацию Чернобыльской катастрофы люди ехали как в обычную командировку, да еще в массовом количестве, то теперь такой самостоятельности положен конец. С атомом, да еще радиоактивным, шутить нельзя. Поэтому в ст. 21 сказано: «Облучение граждан, привлекающихся к ликвидации последствий радиационных аварий, не должно превышать более чем в 10 раз среднегодовое значение основных гигиенических нормативов облучения для работников». И такое допускается только один раз в жизни при добровольном согласии.
На основании этого закона были разработаны и постановлением Госкомсанэпиднадзора РФ от 19 апреля 1996 г. №7 введены в действие новые Нормы радиационной безопасности – НРБ-96. Эти нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:
облучения персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения (ИИИ);
облучение населения и персонала в условиях радиационной аварии;
облучение работников промышленных предприятий и населения всеми природными ИИИ;
медицинское облучение населения.
По сравнению с НРБ-76/87 исключены такие термины и определения, как «коэффициент качества излучения», «экспозиционная доза», внесистемные единицы измерения доз (рентген, бэр и их производные), внесистемная единица кюри. Однако на практике все еще приходится пользоваться и старыми, привычными единицами измерения.
В новых Нормах радиационной безопасности изменена классификация облучаемых лиц, в соответствии, с которой приняты две категории:
персонал – лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
население, не занятое в сферах производства и обслуживания.
Дозовые пределы за год, мЗв.
Нормируемая величина |
Персонал |
Остальное население |
||
Группа А |
Группа Б |
|||
Эффективная доза |
50 |
12.5 |
5 |