F-распределение является асимметричным и обычно используется в дисперсионном анализе. Такую плотность распределения имеют величины, являющиеся отношением двух величин, имеющих хи-квадрат распределение, при этом соответствующее F-распределение определяется двумя значениями числа степеней свободы. Первый индекс всегда соответствует числу степеней свободы для числителя, и этот порядок является существенным, поскольку F(10,12) не равно F(12,10). В столбце показано число степеней свободы числителя, а в строке — число степеней свободы для знаменателя. В названии таблицы указано значение вероятности.
Например, критическое значение F-распределения для вероятности 0.025 и степеней свободы 10 и 12 находится на пересечении столбца со значением 10 (числитель) и строки со значением 12 (знаменатель): F(0.025, 10, 12) = 3.3736
df1— число степеней свободы большей дисперсии
df2—число степеней свободы меньшей дисперсии
Уровень значимости a =0.025
df2/df1 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
12 |
15 |
20 |
24 |
30 |
40 |
60 |
120 |
INF |
1 |
647.7890 |
799.5000 |
864.1630 |
899.5833 |
921.8479 |
937.1111 |
948.2169 |
956.6562 |
963.2846 |
968.6274 |
976.7079 |
984.8668 |
993.1028 |
997.2492 |
1001.414 |
1005.598 |
1009.800 |
1014.020 |
1018.258 |
2 |
38.5063 |
39.0000 |
39.1655 |
39.2484 |
39.2982 |
39.3315 |
39.3552 |
39.3730 |
39.3869 |
39.3980 |
39.4146 |
39.4313 |
39.4479 |
39.4562 |
39.465 |
39.473 |
39.481 |
39.490 |
39.498 |
3 |
17.4434 |
16.0441 |
15.4392 |
15.1010 |
14.8848 |
14.7347 |
14.6244 |
14.5399 |
14.4731 |
14.4189 |
14.3366 |
14.2527 |
14.1674 |
14.1241 |
14.081 |
14.037 |
13.992 |
13.947 |
13.902 |
4 |
12.2179 |
10.6491 |
9.9792 |
9.6045 |
9.3645 |
9.1973 |
9.0741 |
8.9796 |
8.9047 |
8.8439 |
8.7512 |
8.6565 |
8.5599 |
8.5109 |
8.461 |
8.411 |
8.360 |
8.309 |
8.257 |
5 |
10.0070 |
8.4336 |
7.7636 |
7.3879 |
7.1464 |
6.9777 |
6.8531 |
6.7572 |
6.6811 |
6.6192 |
6.5245 |
6.4277 |
6.3286 |
6.2780 |
6.227 |
6.175 |
6.123 |
6.069 |
6.015 |
6 |
8.8131 |
7.2599 |
6.5988 |
6.2272 |
5.9876 |
5.8198 |
5.6955 |
5.5996 |
5.5234 |
5.4613 |
5.3662 |
5.2687 |
5.1684 |
5.1172 |
5.065 |
5.012 |
4.959 |
4.904 |
4.849 |
7 |
8.0727 |
6.5415 |
5.8898 |
5.5226 |
5.2852 |
5.1186 |
4.9949 |
4.8993 |
4.8232 |
4.7611 |
4.6658 |
4.5678 |
4.4667 |
4.4150 |
4.362 |
4.309 |
4.254 |
4.199 |
4.142 |
8 |
7.5709 |
6.0595 |
5.4160 |
5.0526 |
4.8173 |
4.6517 |
4.5286 |
4.4333 |
4.3572 |
4.2951 |
4.1997 |
4.1012 |
3.9995 |
3.9472 |
3.894 |
3.840 |
3.784 |
3.728 |
3.670 |
9 |
7.2093 |
5.7147 |
5.0781 |
4.7181 |
4.4844 |
4.3197 |
4.1970 |
4.1020 |
4.0260 |
3.9639 |
3.8682 |
3.7694 |
3.6669 |
3.6142 |
3.560 |
3.505 |
3.449 |
3.392 |
3.333 |
10 |
6.9367 |
5.4564 |
4.8256 |
4.4683 |
4.2361 |
4.0721 |
3.9498 |
3.8549 |
3.7790 |
3.7168 |
3.6209 |
3.5217 |
3.4185 |
3.3654 |
3.311 |
3.255 |
3.198 |
3.140 |
3.080 |
11 |
6.7241 |
5.2559 |
4.6300 |
4.2751 |
4.0440 |
3.8807 |
3.7586 |
3.6638 |
3.5879 |
3.5257 |
3.4296 |
3.3299 |
3.2261 |
3.1725 |
3.118 |
3.061 |
3.004 |
2.944 |
2.883 |
12 |
6.5538 |
5.0959 |
4.4742 |
4.1212 |
3.8911 |
3.7283 |
3.6065 |
3.5118 |
3.4358 |
3.3736 |
3.2773 |
3.1772 |
3.0728 |
3.0187 |
2.963 |
2.906 |
2.848 |
2.787 |
2.725 |
13 |
6.4143 |
4.9653 |
4.3472 |
3.9959 |
3.7667 |
3.6043 |
3.4827 |
3.3880 |
3.3120 |
3.2497 |
3.1532 |
3.0527 |
2.9477 |
2.8932 |
2.837 |
2.780 |
2.720 |
2.659 |
2.595 |
14 |
6.2979 |
4.8567 |
4.2417 |
3.8919 |
3.6634 |
3.5014 |
3.3799 |
3.2853 |
3.2093 |
3.1469 |
3.0502 |
2.9493 |
2.8437 |
2.7888 |
2.732 |
2.674 |
2.614 |
2.552 |
2.487 |
15 |
6.1995 |
4.7650 |
4.1528 |
3.8043 |
3.5764 |
3.4147 |
3.2934 |
3.1987 |
3.1227 |
3.0602 |
2.9633 |
2.8621 |
2.7559 |
2.7006 |
2.644 |
2.585 |
2.524 |
2.461 |
2.395 |
16 |
6.1151 |
4.6867 |
4.0768 |
3.7294 |
3.5021 |
3.3406 |
3.2194 |
3.1248 |
3.0488 |
2.9862 |
2.8890 |
2.7875 |
2.6808 |
2.6252 |
2.568 |
2.509 |
2.447 |
2.383 |
2.316 |
17 |
6.0420 |
4.6189 |
4.0112 |
3.6648 |
3.4379 |
3.2767 |
3.1556 |
3.0610 |
2.9849 |
2.9222 |
2.8249 |
2.7230 |
2.6158 |
2.5598 |
2.502 |
2.442 |
2.380 |
2.315 |
2.247 |
18 |
5.9781 |
4.5597 |
3.9539 |
3.6083 |
3.3820 |
3.2209 |
3.0999 |
3.0053 |
2.9291 |
2.8664 |
2.7689 |
2.6667 |
2.5590 |
2.5027 |
2.445 |
2.384 |
2.321 |
2.256 |
2.187 |
19 |
5.9216 |
4.5075 |
3.9034 |
3.5587 |
3.3327 |
3.1718 |
3.0509 |
2.9563 |
2.8801 |
2.8172 |
2.7196 |
2.6171 |
2.5089 |
2.4523 |
2.394 |
2.333 |
2.270 |
2.203 |
2.133 |
20 |
5.8715 |
4.4613 |
3.8587 |
3.5147 |
3.2891 |
3.1283 |
3.0074 |
2.9128 |
2.8365 |
2.7737 |
2.6758 |
2.5731 |
2.4645 |
2.4076 |
2.349 |
2.287 |
2.223 |
2.156 |
2.085 |
21 |
5.8266 |
4.4199 |
3.8188 |
3.4754 |
3.2501 |
3.0895 |
2.9686 |
2.8740 |
2.7977 |
2.7348 |
2.6368 |
2.5338 |
2.4247 |
2.3675 |
2.308 |
2.246 |
2.182 |
2.114 |
2.042 |
22 |
5.7863 |
4.3828 |
3.7829 |
3.4401 |
3.2151 |
3.0546 |
2.9338 |
2.8392 |
2.7628 |
2.6998 |
2.6017 |
2.4984 |
2.3890 |
2.3315 |
2.272 |
2.210 |
2.145 |
2.076 |
2.003 |
23 |
5.7498 |
4.3492 |
3.7505 |
3.4083 |
3.1835 |
3.0232 |
2.9023 |
2.8077 |
2.7313 |
2.6682 |
2.5699 |
2.4665 |
2.3567 |
2.2989 |
2.239 |
2.176 |
2.111 |
2.041 |
1.968 |
24 |
5.7166 |
4.3187 |
3.7211 |
3.3794 |
3.1548 |
2.9946 |
2.8738 |
2.7791 |
2.7027 |
2.6396 |
2.5411 |
2.4374 |
2.3273 |
2.2693 |
2.209 |
2.146 |
2.080 |
2.010 |
1.935 |
25 |
5.6864 |
4.2909 |
3.6943 |
3.3530 |
3.1287 |
2.9685 |
2.8478 |
2.7531 |
2.6766 |
2.6135 |
2.5149 |
2.4110 |
2.3005 |
2.2422 |
2.182 |
2.118 |
2.052 |
1.981 |
1.906 |
26 |
5.6586 |
4.2655 |
3.6697 |
3.3289 |
3.1048 |
2.9447 |
2.8240 |
2.7293 |
2.6528 |
2.5896 |
2.4908 |
2.3867 |
2.2759 |
2.2174 |
2.157 |
2.093 |
2.026 |
1.954 |
1.878 |
27 |
5.6331 |
4.2421 |
3.6472 |
3.3067 |
3.0828 |
2.9228 |
2.8021 |
2.7074 |
2.6309 |
2.5676 |
2.4688 |
2.3644 |
2.2533 |
2.1946 |
2.133 |
2.069 |
2.002 |
1.930 |
1.853 |
28 |
5.6096 |
4.2205 |
3.6264 |
3.2863 |
3.0626 |
2.9027 |
2.7820 |
2.6872 |
2.6106 |
2.5473 |
2.4484 |
2.3438 |
2.2324 |
2.1735 |
2.112 |
2.048 |
1.980 |
1.907 |
1.829 |
29 |
5.5878 |
4.2006 |
3.6072 |
3.2674 |
3.0438 |
2.8840 |
2.7633 |
2.6686 |
2.5919 |
2.5286 |
2.4295 |
2.3248 |
2.2131 |
2.1540 |
2.092 |
2.028 |
1.959 |
1.886 |
1.807 |
30 |
5.5675 |
4.1821 |
3.5894 |
3.2499 |
3.0265 |
2.8667 |
2.7460 |
2.6513 |
2.5746 |
2.5112 |
2.4120 |
2.3072 |
2.1952 |
2.1359 |
2.074 |
2.009 |
1.940 |
1.866 |
1.787 |
40 |
5.4239 |
4.0510 |
3.4633 |
3.1261 |
2.9037 |
2.7444 |
2.6238 |
2.5289 |
2.4519 |
2.3882 |
2.2882 |
2.1819 |
2.0677 |
2.0069 |
1.943 |
1.875 |
1.803 |
1.724 |
1.637 |
60 |
5.2856 |
3.9253 |
3.3425 |
3.0077 |
2.7863 |
2.6274 |
2.5068 |
2.4117 |
2.3344 |
2.2702 |
2.1692 |
2.0613 |
1.9445 |
1.8817 |
1.815 |
1.744 |
1.667 |
1.581 |
1.482 |
120 |
5.1523 |
3.8046 |
3.2269 |
2.8943 |
2.6740 |
2.5154 |
2.3948 |
2.2994 |
2.2217 |
2.1570 |
2.0548 |
1.9450 |
1.8249 |
1.7597 |
1.690 |
1.614 |
1.530 |
1.433 |
1.310 |
inf |
5.0239 |
3.6889 |
3.1161 |
2.7858 |
2.5665 |
2.4082 |
2.2875 |
2.1918 |
2.1136 |
2.0483 |
1.9447 |
1.8326 |
1.7085 |
1.6402 |
1.566 |
1.484 |
1.388 |
1.268 |
1.000 |
Вернуться Статистические таблицы